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It is shown that if a fully atomic, complete orthomodular lattice satisfies a 
"minimal support condition" (m.s.c.), then it satisfies Piron's axioms, and is 
thereby shown to be the projection lattice of  a generalized Hilbert space. It is 
shown, conversely, that m.s.c, holds in Hilbert space subspace lattices. The 
physical justification for m.s.c, is provided in the context of a property lattice 
~(~r E) for a realistic entity (~r ~) in the sense of  Foulis-Piron-Randall .  This 
context provides a clear focus on key issues in the debate over the appropriateness 
of  requiring quantum logics to be represented over Hilbert spaces. 

1. INTRODUCTION 

Piron (1976) has provided sufficient conditions for a quantum logic to 
be the projection lattice of a generalized Hilbert space. Attempts to find 
physically motivated justification for Piron's axioms, particularly the 
mathematically motivated "covering axiom," have been at best marginally 
successful. In this paper we provide a physically justifiable "minimal support 
condition" that assures that a fully atomic, complete orthomodular lattice 
will satisfy Piron's axioms. We show, conversely, that the projection lattice 
of standard Hilbert space satisfies the minimal support condition. 

We also address the broader issue of the tradeoft between physical 
motivation and mathematical convenience in formulations of quantum 
mechanics as it is brought into sharp focus by Foulis, Piron, and Randall 
in their operationalist approach (Foulis et aL, 1982). They show that impos- 
ing the axioms of Hilbert space on their property lattice leads to the result 
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that their "cannonical  map"  is a lattice isomorphism from the operational 
logic to the property lattice, leading to the metaphysically confusing indistin- 
guishability between "proposi t ions" and "properties."  Conversely, if the 
"canonical map"  is an isomorphism, and the set of  states is not "redundant ,"  
then the property lattice is a fully atomic, complete or thomodular  lattice. 
Therefore, if it also satisfies our minimal support  conditions, then it satisfies 
Piron's axioms, leading back to Hilbert space. These results provide a 
mathematically simple and physically natural framework in which to carry 
on the debate of  the appropriateness of Hilbert space for quantum 
mechanics. 

2. P R E L I M I N A R I E S  

Suppose (~,  =<, ') is a complete, orthomodular  lattice (a quantum logic) 
with zero 0~ and one 1~. For p, q c ~ we say p is orthogonal to q, and we 
write p•  if p<=q '. We say q covers p i f p < q ,  and for all r c ~ ,  p<=r<=q 
implies p = r or q = r. An element x c ~ is called an atom if it covers 0~. 
We denote by A ( ~ )  the set of  all atoms of ~.  We say ~ is fully atomic if 
for every nonzero p c ~ ,  the set A(p) = {x c A(~)[x_<-p} is not empty, and 

P : V A(p). 
Next we briefly review how lattices arise in the operationalist approach 

to quantum mechanics. We refer the reader to Foulis et al. (1982) for further 
details. Let ~r be an orthocoherent manual. We write X = U ~r and refer 
to X as the set of  outcomes for ~r A subset S ~ X is called an sg-support 
if (i) S n E ~ f ~  for all E~s r  and (ii) for all E, Fcsg,  S n ( F \ E ) ~ Q  iff 
S n ( E \ F ) r  (By F \ E  we mean { x ~ F l x ~ E } . )  A subset satisfying 
property (i) is called a transversal. Property (ii) is called the exchange 
condition for S. As Foulis et al. point out, the exchange condition is physically 
well-motivated for a set S consisting of all outcomes that are possible to 
occur, if tested, when a physical system characterized by manual ~r is in a 
"realistic state" in the sense of Einstein, Podolsky, and Rosen. 

An entity (sg, E) is a manual  sr and a set ~ of  ~ -suppor t s  such that 
[ J  y~ = x .  We call ~ the set of  states of the entity. A property of  (,if, E) is 
a set P __ X such that P = Q or P = U b~ for some set of  states 5e c_ 2s Under  
the partial ordering of set inclusion the set Le(s~, 2s of  all properties forms 
a complete lattice, the property lattice, with zero 02 = Q and one la~ = X. A 
set of  states Y, is said to be not redundant if T, S c 2s and T c  S implies 
T = S. If  2s is not redundant,  then ~?(sr 2s is a fully atomic, complete lattice 
with 2s as its set of atoms. 

For the entity (~r 2s if S ~ 2s then event A c ~(~r is S-true if S c~ E ___ A 
whenever A ___ E ~ ~r Given event A ~ ~(~r we define [A] = U {S c 2s is 
S-true}. Now the operational logic/I(~r is an or thomodular  poset whose 
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members are equivalence classes of  events under the relation: A is equivalent 
to B iff there is an event C with A~JC, B~.)C ~ ~g. I f  A is equivalent to B, 
then [A] = [B], so that the canonical map [ " ]: A ~ {(M) ~ [A] e ~ (M,  ~) 
can be lifted to become an order-preserving map from I/(M) to ~ (M,  ~). 
We shall use the same symbol [" ] to refer to the lifted map, relying on the 
context to avoid confusion for the reader. 

Next we review the axioms of C. Piron under which a complete lattice 
is known to be isomorphic to the lattice of  closed subspaces of  a (general- 
ized) Hilbert space. In making use of  Piron's main result, we shall have 
available to us an orthocomplementation,  which will enable us to state a 
version of Piron's axioms that are a little less complicated than the version 
appearing originally in Piron (1976). 

Let 5g = (~,  _-<, ') be an orthocomplemented,  complete lattice with zero 
0~e and one lze. We say p, q ~ ~ are compatible if and only if the sublattice 
in Le generated by {p, p ' ,  q, q'} is classical (distributive). 

Axiom P. I f  p, q ~ 5g, and p < q, then p and q are compatible. 

Axiom A1. I f  0.se ~ p c ~ ,  there exists atom x e A ( ~ )  with x =< p. 

Axiom A2. I f  x ~ A ( ~ )  and q e ~ with x :~ q, then x v q covers q. 

A lattice satisfying Axiom A1 is said to be atomic. It is Axiom A2 that 
is the central topic of  this paper. We shall refer to it as the covering law. 

The center of Ze is the set of  elements that are compatible with all other 
elements. We say 5f is irreducible if and only if the center of  5f is {0ae, 1~}. 

The theorem that results from the axioms is: 
Theorem 2.1 (Piron). A complete, irreducible, or thocomplemented lat- 

tice satisfying Axioms P, A1, and A2, and in which l~e is neither an atom 
nor the join of  two orthogonal atoms, is isomorphic to the lattice of  closed 
subspaces of  a (generalized) Hilbert space. 

Piron has shown that a general lattice satisfying the above axioms is 
a direct sum of irreducible lattices (one for each atom in the center), and 
so it suffices for us to consider irreducible lattices. Physically, a reducible 
lattice corresponds to one in which there are superselection rules. The 
assumption about lze is needed to avoid a pathology in dimension 2. 

To complete our preliminaries we state a lemma that will be useful in 
a later section. Its p roof  requires a routine application of Zorn 's  lemma. 

Lemma 2.2. Let (Le, _<, ,) be a complete, atomic lattice with one 1~. I f  
P ~  A ( ~ )  is a pairwise othogonal set of  atoms in ~,  then there exists 
pairwise orthogonal set E with P ~ E c A(~7) and V E = 1~. 
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3. THE M I N I M A L  S U P P O R T  C O N D I T I O N  

Throughout this section we suppose that ~ is a fully atomic, complete 
orthomodular  lattice with zero 0e  and one l e .  In the next section we shall 
see how such lattices arise from rudimentary considerations. 

Definitions 3.1. 
(i) ~ ' e :=  {E ~ A(~f)IE is a pairwise orthogonal set of atoms with 

VE=le}. 
The members of  a le  are called operations. 
(ii) X~e := {..J a le  = A ( ~ ) .  
(iii) For q e ~ we define ~q := [0, q'] = {p e ~ ]p  <= q'}. 

We also define Xq:=A(dgq), the atoms of ~q, and we define 
alq := {A_G_ Xq]A is pairwise orthogonal, and V A = q'}. 

It can be shown that ag~ is a coherent manual. Also, for q e 5~, Ggq is 
a fully atomic, complete or thomodular  sublattice of ~ with zero equal to 
0se and with one equal to q'. Thus, afq is a manual with outcome set Xq. 
We shall be concerned with supports on the manuals a~e and J q  (q e ~ ) ,  
which we shall call, respectively, de - suppor t s  and ~dq-supports. 

For x e A ( ~ )  we write X e \ x  • for {y c X~e]yXx}. It is not difficult to 
show that X e \ x  • is an Me-support .  

Lemma 3.2. If  S is an Me-support  and q c ~ ,  and S ~ Xq # ~ ,  then 
S ~ Xq is an 5~/q-support. 

Proof Let Sq = S c~ Xq. Suppose E and F are two operations in ~/q, so 
that V E = V F = q'. We will show that Sq is a transversal and satisfies the 
exchange condition. Suppose that E ~ ~ ,  and Sq c~ E = Q. Let F be any 
other operation in ~de and let G be any set of  pairwise orthogonal atoms 
such that V G = q. The E w G and F w G are operations in ~de, and since 
S is a support  and S c~ E = Q ,  we have S n F = Q .  Thus, S o meets no 
operation in ~/e, which contradicts the hypothesis. This proves that Sq is 
a transversal. 

Assume now that there exists t ~ Sq c~ (E \F) ,  and we shall show that 
this implies that SqC~(F\E)#Q.  Since ~ is fully atomic, there is an 
orthogonal set A of atoms of ~ with V A = q. For every a c A, e ~ E, we 
have e <= q'<= a', so that A is an orthogonal complement  of  E in ~ .  For 
the same reason, A is also an orthogonal complement  of  F in ~ e .  We know 
that t c E, which implies that t ~ 0e, and t =< q'. So t :~ q, hence t ~ A. Thus, 
t E S c ~ [ ( E � 9 1 6 9  Since S is an ~/e-support ,  we conclude that 
S c~ [ (F  O A) \ (E  O A)] # Q. This implies that S c~ ( F \ E )  ~ Q. Since S c~ F c_ 
Sq, the proof  is complete. [] 

Definitions 3.3. Let n be a positive integer. 
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(i) We write rank (5~)= n if n is the least integer such that every 
operation in M~ consists of  n or fewer outcomes. 

(ii) We shall say that lattice 2? is an n-lattice if every operation in Mx 
consists of  exactly n outcomes. 

Note that our rank is one less than the one defined by Piron. 
Next We introduce the minimal support  condition for 5~. 

Definition 3.4. Lattice 5r satisfies the minimal support condition (re.s.c.) 
if and only if for every x c A ( ~ ) ,  and every q ~ ~,  either (a) rank(~q)  _- 2, 
or (b) i f X q \ x  • is not empty, then it is minimal (with respect to set inclusion) 
among all Mq-supports. 

Note that if q = 0~e, then ~fq = ~ and Xq = X~e, so condition (b) asserts 
that if rank(5~) _-> 3, then for every atom x ~ A(5~), X~e\x • is minimal among 
all M~-supports. 

The exception for lattices of  rank less than three arises because for 
such a lattice Lg, no two operations in d~e intersect, and the exchange 
condition for supports becomes vacuously satisfied. 

The minimal support  condition is motivated by two assumptions about 
the characterization of a physical system by an entity (M, Z). 

First, we assume that the set of  states is "unital"  in the sense that if 
x ~ X is an experimental outcome, then there should be a state S 6 Y in 
which x is true with certainty. We interpret S as the set of  all outcomes 
that are possible to occur if tested when the system is in state S. Thus, if 
y c S, then y cannot be orthogonal to x. Hence, S c X \ x  • On the other 
hand, following the principle of  Jaynes that S should provide "minimal  
information,"  there should not be an outcome in X \ x  ~ that is not a member  
of  S. I f  y were such an outcome, then S would provide not only the 
information that x is true with certainty, but also the information that y is 
false with certainty. Therefore, we conclude that S = X \ x  ~. In other words, 
it is quite natural to assume that every M-support  of  the form X \ x  ~ is a 
state. This is in fact the case in orthodox quantum mechanics in Hilbert 
space, where even the converse is true: every state is of  the form X \ x  ~ for 
some outcome x. 

The second consideration leading to m.s.c, is the assumption that nature 
does not hold back information. I f  it is assumed that a property lattice used 
to investigate a system is the correct one for that system, then it must be 
assumed that the states in that lattice are the ontological states. As such, 
they should be the minimal properties, the atoms of the property lattice. 
Therefore, there should be no states that are "hiding" as proper subsets of  
other states. Nor should any such "hidden"  states appear  when attention 
is restricted to a subsystem of  the original system by consideration of an 
order interval of  the original lattice. Since all M-supports can be considered 
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properties by virtue o f  their "testabili ty" provided by the exchange condi- 
tion, it follows that no state should contain an ~ - s u p p o r t  as a proper  subset. 
The minimal support  condit ion,  therefore, is merely an assumption of  
non redundancy  of  ontological  states having " indicator  outcomes ."  That  is, 
states o f  the form X \ x ' .  

Of course, in practice we deal with lattices that are only imperfect  
representations o f  physical systems. The discovery o f  h idden states in a 
lattice should serve to confirm the imperfection. As we shall see in Section 
5, Hilbert space lattices in or thodox quan tum mechanics  satisfy m.s.c. 

We begin now the main  task of  this section. We shall show that  if 3? 
satisfies re.s.c., then it satisfies the covering law. 

Lemma 3.5. I f  37 satisfies m.s.c, and z ~ ~ ,  then ~?~ satisfies m.s.c. 

Proof  Since the lemma is obviously true if rank(Sly)=< 2, we turn 
immediately to the case rank(3?z) = n - 3 .  Suppose  q ~ ~z,  x ~ A ( ~ ) ,  
rank((Sfz)q) => 3, and (Xz)q\X • # ;g. It is not  difficult to verify that (5r = 
3?zv q, and that  (Xz)q\X • = Xzvq\X 1, which is minimal among  ~ e ~  -supports  
because 37 satisfies m.s.c.D 

Before the next lemma we remind the reader than in any or thocomple-  
mented lattice 5f, if E, F E s ~ ,  then neither E \ F  nor F \ E  can consist of  
exactly one outcome.  

Lemma 3.6. Suppose n _-> 3 is a natural number  and that 37 is an n-lattice 
that satisfies m.s.c. I f  p, q ~ A(Le) and p ~' q, then there exists z e A ( ~ )  with 
p v q _-< z'. (That is, p _1_ z and q _L z.) 

Proof Let S = X~e\q • Then S is a minimal J~e,support ,  and p ~ S. 
Hence $1 = S\{p} either is not  a transversal or  violates the exchange condi- 
tion. In the first case, S c~ E = {p} for some operat ion E c sC~e. Thus,  p '  _1_ q, 
which implies that q = p, since p is an atom. Any a tom z or thogonal  to p 
now serves. In the second case there exist operat ions E, F c ~se with p c E \ F  
and $1 n ( E \ F )  = Q, while SI c~ (F \E)  # (g. Since E \ F  has at least two 
outcomes,  there exists z ~ E \ F  with z # p. If  z c S, then z c S~, contradict ing 
the fact that  S~ c~ (E \F)  = @. Hence,  z ~ S, so z • q. Since z, p ~ E, we also 
have z • p, and the p roof  is complete.  [ ]  

Theorem 3.7. Let 37 satisfy m.s.c, and let n be a natural number.  Suppose 
that Mso has an operat ion o f  cardinality n and no operat ions o f  cardinali ty 
less than n. Then Lr is an n-lattice. 

Proof Our proof  is by induct ion on n. 
I f  n = 1, then ls~ is an atom and the theorem is trivially true. 
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Suppose  now that  n_-_ 2 and  that  the t heo rem is true for  all na tura l  
numbers  less than  n. We also can suppose  tha t  rank(~)_-> 3, because  n--- 
r a n k ( ~ ) ,  and  i f  n = r a n k ( ~ ? ) =  2, then ~ is a 2-latt ice.  

N o w  there  is at least  one ope ra t ion  E e s~se with E = { a ~ , . . . ,  an}-c 
A ( ~ )  and  V E = lse. We  assert  that  i f  F = { f l , . . .  ,fro} is also an ope ra t ion  
in s~se with m > n, then F c~ E = Q. If  we suppose  to the cont rary ,  we may  
assume f~ = a~. Then ~a,  satisfies m.s.c, by  L e m m a  3.5, and  thus,  by  the 
induc t ion  assumpt ion ,  5f~, is an ( n -  1)-lattice. However ,  we have that  

i=2  i=2  

a con t rad ic t ion  o f  the  fact  that  all ope ra t ions  in sg~eol have the same 
card ina l i ty .  

Let us denote  by  s~" the set o f  ope ra t ions  in sCse of  ca rd ina l i ty  n, and  
let ~ = s4ao\sg'.  Then -rise is the d is jo in t  un ion  ~se = s4"O  ~ ,  and  by the 
p reced ing  pa r ag raph ,  X~e is also a d i s jo in t  un ion  Xse = X " � 9  X~ ,  where  
X "  = U sg" and  X~ = U ~-  Our  p r o o f  will be  comple te  i f  we can es tabl ish  
that  X ~  = ~ .  

Suppose  that  x e X "  and  y e X~.  By L e m m a  2.2, i f  z e X:e and  z _L y, 
then z e X~ .  Similar ly ,  i f  z e Xse and  z • x, then  z e X ' .  F r o m  this it fo l lows 

that  

S := X ~ \ ( x  I u y i )  = ( X , \ x  • O ( X ~ \ y  ~) 

From the fact that  M~ = ~/" �9 ~ ,  it is not  difficult to es tabl ish  that  S is an 
~/~e-support. Clear ly ,  S c_ X s e \ x  • We shal l  show that  this con ta inmen t  is 
p roper .  Since n > 1, there  exists z ~  X~ with z _1_ y. Then z 2' x;  hence,  
z e X ~ \ x  • but  z ~ S. Thus,  X~e\x  • is not  a min ima l  sCse-support, and  this 
con t r ad i c t i on  comple tes  our  proof .  []  

Our  next  l emma  is the  ini t ia l  s tep in an induc t ion  argument .  

L e m m a  3.8. I f  ~ is a 3-lat t ice that  satisfies m.s.c., then ~ satisfies the 
cover ing axiom.  

Proof  Suppose  that  x e A ( ~ )  and  q e ~ with x ~ q. We must  show that  
x v q covers  q. The hypo theses  o f  the l e m m a  imply  that  every m e m b e r  o f  

is e i ther  O~,  l~e, an a tom,  or  a jo in  o f  two atoms.  I f  q = r v s for  two 
a toms  r and  s, then x v q = x v ( r  v s ) =  lse, which  covers q. 

N o w  suppose  q is an atom. In case q .1_ x, there  exists z e X~e such that  
{z, q, x} e ~/~. In case q Z x, we know from L e m m a  3.6 that  there  exists 
z e X~  o r thogona l  to bo th  q and  x. In e i ther  case, then,  there  exists z e X~e 
with x v q <~ z'  < l s~. So x v q covers q. [] 

The fo l lowing  t heo rem comple tes  the  induc t ion  a rgumen t  in i t ia l ized  
by  L e m m a  3.8 and  es tabl ishes  the main  result  o f  this section.  
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Theorem 3.9. If n is a natura l  n u m b e r  greater than 2, and if 5g is an 
n-lattice that satisfies m.s.c., then 37 satisfies the covering axiom. 

Proof Lemma 3.8 establishes the result  for n = 3, so we assume n > 3, 
and  that the theorem is true for all natural  numbers  less than  n. To establish 
the covering axiom, we suppose x �9 A(37), q �9 37, and  x :~ q. 

If  x • q and  r �9 37 with q < r ~ x v q, then there exists s �9 37\{0~e} with 
s • q and  s v  q = r. Thus,  

O~e=q' Aq<--q'^(svq)<=q' A(xvq)  

By or thomodular i ty ,  we have then that 0~ =< s =< x. But we chose s so that 
O ~ < s ,  and  we know x is an atom, so s = x .  Thus,  r = x v q  and  s o x v q  
covers q. 

We suppose now that x Z q. 

Cons ider  first the case x v q < 1~. Then  x v q _-__ z' for some atom z �9 
A(37). Thus,  x _-< z' and  q _-< z', so that x, q �9 37z. Now 37z is an (n - 1)-lattice 
and  satisfies m.s.c., so by the induc t ion  assumpt ion,  x v q covers q in 37z. 
Further,  if r �9 37 and  q < r < x v q_-< z', then r �9 37~. This establishes that 
x v q covers q in 37. 

Next we consider  the case q v x = 1~. We shall show that q is a co-atom, 
and hence is covered by q v x. Suppose A = { r l , . . . ,  rk} c_ A(37), A is pair- 
wise or thogonal ,  and q = V  A. If k =  n - l ,  then q is a co-atom, so we 
suppose k < n - 1 and  seek a contradict ion.  

Now there exist t1 , . . . , tm�9  with m=>2 such that  

{r l , . . . , rk ,  tl,...,tr~}Csg~e. If  t i Z x  for some i, then qvx<=tl<l~e, a 
contradict ion.  So we may assume ti Z x for all i. 

Cons ider  first the case m > 2. Let S = X~e\x ~, and  S~ = S n Xq = Xq\x 1. 
Then  q ,  t2�9 $1, which ensures that $2 := S~\{fi} # Q, and by m.s.c., must  
either not  be a transversal  or violate the exchange condi t ion.  In  the first 
case, S n E = {q} for some E �9 ~ .  Thus, any atom below t~ is or thogonal  
to x. This is a contradic t ion,  since t 2 is below x. In  the second case there 

exist operat ions  E, F�9 with S2A(E\F)=Q, while S2A(F\E)~(~. 
Since E \ F  has at least two members ,  there exists z c E \ F  with z # q .  Then  
z ~ $2, so z �9 Xq\S~', hence z E S. Thus z • x. Hence q v x =< z ' <  lze, a contra- 
diction. 

Final ly,  suppose m = 2. Since x x q, we know there exists at least one 
i with 1 _-__ i ~ k and  r~ ~ x. Let B = A\{r;}, and  let q0 = V B. Let S = X \ x  ~, 
and let S~ = SnXqo= Xqo\X • Since ri, q ,  t2 �9 S~, we know that $2 := S~\{r~} 
is a nonempty ,  proper  subset  of S~. If  $2 is not  a transversal ,  then S~ c~ E = 
{r~} for some E �9 M~e. As above, we conclude  that for some i, t~ • x, a 
contradict ion.  Now rank(37qo)= 3, so $2 violates the exchange condi t ion.  
Then  there exist operat ions  E, F in ~dqo with S2c~(E\F)=(~, while 
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S2n (F \E)  ~ (~. Since ~qo is a 3-lattice, E n F = {p} f o r p  3_ qo. Thus B O E 
and B O F  are operations in ~'~, and ( B O E ) n ( B O F ) = B u { p } .  This 
implies that E \ F  contains two outcomes zl and z2, neither of  which belongs 
to $2. But since S satisfies the exchange condition, and S n  
[ ( F O B ) \ ( E O B ) ] ~ ( ~ ,  either zl or z2 belongs to S n X q = S 1 .  So z~=ri or 
z2 = r .  Assume without loss in generality that z~ = ri. Then z2 3_ q, and since 
z2e Xqo\S, we have z2 J_ x. Thus, q v x<=z'2, and this final contradiction 
completes the proof. [] 

4. PROPERTY LATYICES AND QUANTUM LOGICS  

As we saw in Section 2, lattices arise quite naturally as property lattices 
~T = ~T(~d, s  for entities (M, s In this section we turn our attention to the 
question of  what properties we may reasonably expect ~T to possess. 

In one extreme there are examples of  natural physical situations for 
which the property lattice is not even orthocomplemented,  hence certainly 
not orthomodular.  See, for example, Aerts (1981) and Meilnik (1976). In 
the other extreme is orthodox quantum mechanics in Hilbert space in which 

is the set of  stochastic supports, and the canonical map [ ' ]: II(M)--> 
~(M,  s  is a lattice i somorphism that can carry to the property lattice the 
structure of  the operational logic. In this case ~T is a fully atomic, complete 
or thomodular  lattice. Moreover, as we remarked in Section 3, it is in this 
case that s = {X~e\x• e X}  = A(5s 

Foulis, Piron, and Randall  have investigated in considerable detail the 
consequences of  the condition that the canonical map is an isomorphism 
(Foulis et al., 1982; Randall  and Foulis, 1982, 1983). Our results show that 
their attention to this condition is not misplaced. Not only is the condition 
present in Hilbert space, but we now have the following converse showing 
how the condition helps to lead back to Hilbert space. 

Theorem 4.L Suppose (~ ,  s  is an entity for which s is not redundant,  
and the canonical map is an isomorphism. Suppose also that J ~  contains 
at least one finite operation, and that ~ satisfies re.s.c. Then ~ satisfies 
Piron's axioms; hence, if ~ is irreducible and of rank _->3, it is isomorphic 
to the lattice of  closed subspaces of  a generalized Hilbert space. 

Proof That Axiom P and Axiom A1 are satisfied follows from the 
orthomodulari ty of  the operational logic, and the fact that 5s is fully atomic 
whenever Y. is not redundant.  

Since ~ has at least one finite operation, there is an integer n and 
an operation of cardinality n such that no operation has cardinality less 
than n. Then, by Theorem 3.7, 5r is an n-lattice. I f  n _-< 2, then 5~ clearly 
satisfies the covering law, and if n => 3, then ~ satisfies the covering law by 
Theorem 3.9. [] 
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This result helps to highlight some key issues in the debate about how 
restrictive Hilbert space is for quantum mechanics. As we noted in Section 
3, if we have any faith at all in the descriptive value of an entity, we should 
suppose that its set of  ontological states is not redundant,  and that every 
sC~-support is a property. So, following Piron and others, if we require the 
states to be the minimal properties, we should not expect to find ~ - s u p p o r t s  
as proper subsets of states. The minimal support  condition is a natural 
assumption, therefore, if we have reason to believe that supports of  the 
form X \ x  z (x c X )  are states. That they should be so was argued from a 
physical point of view in Section 3. But in fact it follows from Theorem 16 
in Randall and Foulis (1983), once we known that [ ' ]  is an isomorphism 
and E is not redundant,  that the states are precisely the supports of  the 
form X \ x  • Thus, clearly, m.s.c, is not the most restrictive hypothesis in 
Theorem 4.1. 

Our result therefore provides further evidence that the restrictiveness 
of  the so-called "Mackey-Axiom VII ,"  that quantum logics are isomorphic 
to subspace lattices of Hilbert spaces, is closely connected to the restrictive- 
ness of requiring that the quantum logic be isomorphic to the property 
lattice. We note that we have arrived at this conclusion without any mention 
of stochastic states (probability measures) and the functional analysis often 
associated with them. On the other hand, Rfittimann (1985) uses functional 
analysis to arrive at a similar conclusion when he argues that in the presence 
of a spectral theorm, a quantum logic is isomorphic to the face lattice (of 
properties) determined by the o--additive probability measures on the logic. 

5. M I N I M A L  SUPPORTS IN HILBERT SPACE 

In this section we show that the minimal support condition holds in 
the projection lattices of  Hilbert spaces. We begin by considering real Hilbert 
spaces, and after Corollary 5.6 we extend our result to complex and quater- 
nionic spaces. 

We begin with real Hilbert space H of dimension three. Let ~ be the 
"frame manual ,"  the collection of all maximal, orthonormal subsets of H. 
It will be convenient to picture a typical operation E 6 ~ as a set of  three 
points on the projective plane (a unit sphere with antipodal points identified) 
located at the heads of  three pairwise orthogonal vectors drawn from the 
center Of the sphere. (See Figure 1.) As usual, we denote U M by X. For 
x, y c X with x ~ y, we define the great circle ~-~ as the set z • where z is 
the unique member  of  X perpendicular to both x and y. 

The operational logic H(M) is isomorphic to the fully atomic, 
orthomodular,  complete lattice of  all projection operators on H, which is 
the quantum logic usually associated with H in orthodox quantum 



Minimal Supports 445 

X / 

Fig. 1. 

mechanics.  I f  we let E = { s u p p ( w ) ] w  is an M-weight}, then the canonical  
map [ ' ]  is a lattice i somorphism,  so the proper ty  lattice ~ =  ~ ( M ,  E) is 
i somorphic  to H(M). Further,  Z is not  redundant ,  so from Theorems 7 and 
16 in Randal l  and Foulis (1982) we have E = {Ix]Ix ~ X} = { X \ x •  c X} ,  
and E is precisely the set o f  atoms for &o. Referring to Figure 1, if x ~ X is 
at the north  pole, then X \ x  • is the set o f  all points in X except the points 
on the equator.  We shall show that X \ x "  is a minimal M-support .  

Suppose  x ~ X and S is an M-suppor t  with S c X \ x  • We can picture 
x located at the north pole,  as in Figure 1. We shall argue that S must  be 
a subset o f  polar  cap. Then we shall show that no such subset can be an 
M-support .  

Lemma 5.1. x c S. 

Proof Suppose  x ~ S. Select any two points y, z on the equator  x I with 
y 3_ z. Then y, z ~ X \ x  • so y, z ~ S. Thus, E = {x, y, z} ~ M, and S c7 E = O, 
contradict ing the fact that  S is an M-support .  []  

Now let us consider  a cont inuous  parametr izat ion o f  the equator  x • 
with real interval [ - a ,  a )  (a  > 0), so that every point  in x • corresponds  to 
a real number.  To avoid cumbersome notat ional  difficulties, we shall use 
the same symbol to refer to a number  in [ - a ,  a)  and to its cor responding  
point  in x I. For  every y c X \ x "  (y ~ x) we define ty as the point  in x J- on 
the great circle x~. 

Next we define a real-valued funct ion on [ - a ,  a)  as follows: 

f (  t) = inf{d(t, s)]s c (S ~ ~ ) }  

where d(t,  s) is the (shortest) distance along xt from s to t. Our  goal is to 
show that f ' ( t )  exists and equals zero for every t c ( - a ,  a). This will show 
that f is a constant  function.  From there we argue as follows. (See Figure 
2.) Suppose y ~ X \ x  l ,  and y ~ S .  Then y C x  and f (  ty ) => 0. Let z ~ ' ~ ,  so 
that f ( ty)  = d ( z, ty ). Then,  if s ~ S, d ( ts , s) >= f ( ts ) = f ( ty ) = d ( z, ty ). This will 
establish that  S is a subset o f  the polar  cap determined by z. 
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We proceed now with the proof  that f is a constant function�9 (We are 
grateful to James Henle for his contribution suggesting f and the proof  that 
it is a constant function.) 

Suppose y ~ X \ x  ~ and y # x. There is a unique point u c x ~ with u 2_ y. 
We define Cy as the great circle @. 

Lemrna 5.2. Suppose y ~ X \ x  • and y ~ S. Then: 
(i) C y n S = Q .  
(ii) I f  ZC~y  and d(ty, z)<=d(ty, y), then z~S .  

Proof (i) Let u be the unique point in x= with u • y. There is a unique 
point v e X  such that E ={y, u, v}csr Now since u~  S and y ~  S, then 
there cannot exist w ~ S with w ~ v ' .  For if such w existed, one could find 
a frame F = { v , w , r } c ~ g  so that S n ( F \ E ) # ; D ,  while S n ( E \ F ) = ( ~ ,  
violating the exchange condition for S. Since @ equals v =, the proof  is 
complete. 

(ii) Suppose z ~ y  and d(ty, Z)<-_d(ty, y). One can construct a 
geometrical argument to show that there exists w c Cy with z E Cw. That 
z ~ S then follows from (i).V1 

Note that it follows from (ii) that f is not identically zero. 
Next we show that f ' (0 )  exists and equals zero. Since our argument 

does not depend on a particular parametrization for x ~, this will show that 
f is a constant function. 

For each t c ( - a ,  a) we define z, as the unique member  of ~ with 
d(t, z , )=f ( t ) .  Let us denote by c, the function defined on ( - a ,  a) by 
c,(r) = d(zr.,, r), where zr., is the only point on C~, c~ ~ .  Think of e, as the 
function whose graph represents the great circle C~,. Notice that for every 
t, c , ( t )=f( t ) .  

Lemma 5.3. For every re  ( -a ,  a), co(r) <=f(r). 

Proof (Refer to Figure 3.) I f  f ( 0 ) =  0, then Zo ~ x • and co(r)= 0 for all 
�9 . 

r, so the mequahty holds. So, weassume f(O) > O. If  w ~ Z~.o, r and d(w, r) < 
d(z~,o, r), then there exists y c x0 with d(y, O) < d(zo, 0) and w ~ C~- From 
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the way we define z0 we know that y ~  S. So from Lemma 5.2 we know 
w ~ S. Hence for all s c S n x'~, d(s, r)>= d(zr, o, r )= co(r). Thus 

f ( r )  = inf{d(s, r)[s ~ S n ~ }  >~ co(r) [] 

Now, Co(0)=f(0)  and Co is clearly a ditterentiable funct ion with a 
max imum at 0. Thus, f rom Lemma 5.3 we have 

lim inf f ( r )  - f ( 0 )  => lim co(r) - co(0) c~(0) = 0 (1) 
r~O r r~O r 

Lemma 5.4. For every r c ( -a ,  a), Cr(O) <=f(O). 

Proof Suppose cr(0) > f ( 0 ) .  Let_,w ~ x0 with d(w, 0) = c,(0). Since f (0 )  = 
d(zo, O), there is a point  s ~ S  on x0 with d(zo, O)<d(s ,O)<d(w ,O) .  But 
in this case there is also a y c ~  with d(y, r )<d( z r ,  r) and with s~  Cy. 
Since y ~ S, we have by Lemma 5.2 that s ~ S, a contradict ion.  []  

It is not  difficult to establish that the set {c' , lr~(-a,  a)} is equicon- 
t inuous, so that 

c,(r)-cr(O) 
lim sup 0 

r~O r 

We conclude from Lemma 5.4, then, that  

lim sup f ( r )  - f ( 0 )  = < lim sup cr(r) - c,(0) _ 0 (2) 
r~O r r~O r 

Combin ing  (1) and (2), we have that 

0 =< lim inf f ( r )  - f ( 0 )  =< lim sup f ( r )  - f ( 0 )  =< 0 
r~O r r~O r 

which proves our  assertion that f ' (0 )  = 0. 
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Our next goal is to show that no subset of a proper polar cap can be 
an M-support. This will establish that if S is an M-support and S c_ X \ x  • 
then S = X \ x  • 

Suppose S c X \ x :  and z e X \ x  • with d( t=, z) =f(t=). (Refer to Figure 
4.) If  we suppose S ~ X \ x  • then it follows from Lemma 5.2(ii) that f is 
not the zero function, so f(t=)>O. Let us define the equitorial band B =  
{q~ X[d(tq, q)<f( tq)} .  Notice that B n S - 0 .  Since there are points in 
S • ~ aribtrarily close to z, there is an s ~ xz n S, and a frame E = {u, v, w} 
with s ~ u • and v, w ~ B. But then there is also a frame F = {u, s, y}, which 
leads us to a contradiction of the exchange condition, because S n ( E \ F )  = 
Q, while s ~ S n ( F \ E ) .  This concludes our argument that if M is the frame 
manual for Hilbert space of dimension three, then for every x ~ X = UJ M, 
X \ x  • is a minimal M-support. 

We now consider real Hilbert space H of arbitrarily dimension greater 
than two. 

Theorem 5.5. Let H be a Hilbert space of dimension greater than two. 
Let W(H) be the frame manual of maximal orthonormal subsets of H, and 
suppose x e X = U W(H). Then X \ x  • is a minimal W(H)-support. 

Proof. Our argument above proves the theorem for d im(H)=3,  so 
suppose d im(H)> 3. Suppose S is an W(H)-support, S c_ X \ x  • and u c 
X \ x  • and u ~ S. Now u ~ x, otherwise there exists frame E = {x} O E1 with 
E1 _ x • contradicting the fact that S n E # ~ for every E ~ W(H). So there 
exists y e X with y orthogonal to both u and x. Let K = cl.lin.{x, u, y}. 

Now consider submanual W(~ 1) c_ W(H), and let G be a frame in 
W(~• Suppose F e W(K). Then F �9 G ~ ~(H);  thus S c~ (F  �9 G) ~ O. Fur- 
ther, G g x • so S c~ G = Q. It is not difficult to establish from this that 
S c~ ~ is an W(~)-support. But K is three-dimensional, and because S c~ ~ ___ 
K \ x "  and u 6 ( K \ x •  K), we have contradicted the fact that ~ \ x  x 
must be a minimal ~(~)-support .  [] 

X 

s 

z 

/ "t Z 

Fig. 4. 
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Corollary 5.6. Let N be a Hilbert space o f  d imension greater than two, 
and let ~ = {supp(w)lw is an o%(~)-weight}. Then the proper ty  lattice ~ = 
5r 5:) satisfies the minimal support  condit ion.  

Proof Suppose x E A ( ~ ) .  From theorem 5.5 we know that X \ x  • is a 
minimal W(H)-support .  Suppose  q c ~ .  Since ~ is principal,  we know that 
q = [A] for some or thonormal  set A c H. I f  we let IN = A ~, then S~q can be 
identified with if(N;). Thus,  either rank(s~q)=dim(iN)=<2, or else, by 
Theorem 5.5,  Xq\x  • is a minimal ~r if it is not  empty. []  

Finally, we extend the main result o f  this section to complex and 
quaternionic  Hilbert spaces. 

Let H be a complex or  quaternionic  Hilbert  space o f  d imension greater 
than 2, and let IN be a real Hilbert space with the same dimension as H. 
Suppose q~: I N ~  is a real-linear isometry. Then if E is a frame in ~ ( ~ ) ,  
we have that ~(E):={~(x)lx~E} is a frame in o~(H). Further, it is not  
difficult to establish the following. 

Lemma 5.7. I f  S is an W'(H)-support, then q3-1[S] is an @(iN)-support. 

Now suppose  x 6 XH. We assert that XH\x • is a minimal ~ (H)-suppor t .  
Suppose,  to the contrary,  that  S is an W(H)-support  proper ly  conta ined in 
XH\x • Then there exists y c XH with y Z x and y ~ S. So there exists z ~ x • 
and nonzero  scalars c~ a n d / 3  such that y = ax +/3z. Further, we can write 
a = a7  and /3 = b6, where a and b are real numbers  and 7 and ~ are 
un imodula r  scalars. N o w  let xl = yx and zl = 6z, so that y = axl + bz~. Then 
we can construct  an o r thonormal  basis B = {x~, Zl, h3, ha . . . .  } for H. Sup- 
pose C = {kl, k2 , . . . }  is an or thonormal  basis for IN. Let q~ be a real-linear 
isometry f rom IN to H obta ined by extending the map from C to B defined 
by q~(kl) = x~, ~(k2) = zl,  and r  = hi for all i => 3. By Lemma 5.7, q~-I[S] 
is an W(iN)-support. Further,  it can be established easily that q~-I[S]_c 
X~\k-f,  and that w := akl + bk2 ~ X~\k~.  Finally, since q~(w) = y ~ S, we have 
that  w ~ q~-l[S], contradict ing Theorem 5.5, which asserts that X~\k-? must 
be a minimal f f (K)-suppor t .  
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